News
June 05, 2020

光子集成芯片到光纤的3D对接耦合器研发

Rendering of freeform 3D couplers
Rendering of freeform 3D couplers attached to a nanophotonic circuit for fiber-to-chip coupling. Image: W. Hartmann, H. Gehring, W. Pernice et al., University of Münster

为了实现高效宽带耦合,科学家们验证了一种全新的方法来研究制作3D聚合物耦合器。该3D自由曲面耦合器利用全内反射,运用Nanoscribe的3D微加工技术可直接在光子芯片上进行3D打印制作。该新型技术可应用于例如光通信技术,计算机传感器等领域,并且科学家们已经在微型光谱仪上验证了光纤到芯片的键合技术,用于便携式传感技术和芯片实验室(微流控芯片技术)。

集成光子学可广泛应用于各种领域,例如数据通讯,激光雷达系统的自动驾驶技术和医疗领域中的移动感应设备等。而光子集成电路这项关键技术,尤其是微型光子组件的应用,可以大大缩小复杂光学系统的尺寸并降低成本。光子集成电路的关键技术还在于连接接口,例如光纤到芯片的连接,可以有效提高集成度和功能性。类似于这种接口的制造对于自动对准、效率和宽带方面都非常具有挑战性。针对这些困难,科学家们提出了宽带光纤耦合概念,并通过Nanoscribe的3D微纳打印设备而制造的3D耦合器得以实现。

连接芯片到光纤的3D对接耦合器

来自德国明斯特大学物理研究所,CeNTech纳米技术中心,马克思伯恩研究所和柏林洪堡大学的多学科研究团队提出了这个全新概念并共同研发了连接芯片到光纤的3D聚合物耦合器。该3D耦合器基于全内反射的原理直接在光子集成电路上进行3D打印。这种新颖的方法旨在于可见光波长范围内实现低损耗和宽带光纤到芯片的耦合。该设计由模式转换器,全反射平面和一个充当将光速聚集到光纤端面上的透镜球体所组成。这项研究的成果证明耦合可扩展性的概念可通过3D微纳加工技术得以实现。

3D微纳加工实现光子封装

通常,为了在一个微纳芯片上组装各种光子和光学组件需要多个步骤来完成操作,包括组装、对准、拾取和放置或固定等一系列操作步骤。而利用3D微纳加工技术则可以轻松地在光子集成电路上直接打印高精度自由曲面的微纳器件。因此,3D打印可以大大节省光子封装过程中的设备成本和时间成本。

Nanoscribe加入多项集成光子学研究项目

凭借着独有的3D微纳加工技术,Nanoscribe参与了各种研究项目,以开发基于集成光子学的最新技术。例如,在MiLiQuant研究项目中,Nanoscribe与科学以及工业领域的合作伙伴一起开发了具有微型化,稳定频率和功率的二极管激光器。该项目旨在为医疗诊断产业应用,自动驾驶传感器和基于量子的成像方法制造合适的辐射源。此外,Nanoscribe还在今年年初加入了欧盟资助的研究项目Handheld OCT。这是由来自不同大学、研究机构和科技公司的科学家和工程师们所组成的研究团队,旨在开发用于眼科检查的便携式成像设备。该新型设备可以拓展基于光学相干断层扫描技术(OCT)的应用,实现从现在的固定眼科临床使用扩展到即时眼科移动护理中。

点击以下链接了解更全面的相关资讯

Waveguide‐Integrated Broadband Spectrometer Based on Tailored Disorder
Broadband out-of-plane coupling at visible wavelengths
Low-loss fiber-to-chip couplers with ultrawide optical bandwidth

登录 Register
联系我们